1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
| import torch import torch.nn as nn from torch.hub import load_state_dict_from_url
model_urls = { 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth', 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth', 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth', }
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1): return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1): return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class Bottleneck(nn.Module): expansion = 4
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1, base_width=64, dilation=1, norm_layer=None): super(Bottleneck, self).__init__()
if norm_layer is None: norm_layer = nn.BatchNorm2d
width = int(planes * (base_width / 64.)) * groups
self.conv1 = conv1x1(inplanes, width) self.bn1 = norm_layer(width) self.conv2 = conv3x3(width, width, stride, groups, dilation) self.bn2 = norm_layer(width) self.conv3 = conv1x1(width, planes * self.expansion) self.bn3 = norm_layer(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride
def forward(self, x): identity = x
out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.bn3(self.conv3(out))
if self.downsample is not None: identity = self.downsample(x)
out += identity
return self.relu(out)
class ResNet(nn.Module): def __init__(self, block, layers, replace_stride_with_dilation=None, num_classes=1000, groups=1, width_per_group=64, norm_layer=None): super(ResNet, self).__init__()
if norm_layer is None: norm_layer = nn.BatchNorm2d self._norm_layer = norm_layer
self.inplanes = 64 self.dilation = 1 self.groups = groups self.base_width = width_per_group
if replace_stride_with_dilation is None: replace_stride_with_dilation = [False, False, False] if len(replace_stride_with_dilation) != 3: raise ValueError(f"replace_stride_with_dilation should be None or a 3-element tuple, got {replace_stride_with_dilation}")
self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3, bias=False) self.bn1 = norm_layer(self.inplanes) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]) self.layer4 = self._make_layer(block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2])
self.avgpool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512 * block.expansion, num_classes)
for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False): norm_layer = self._norm_layer downsample = None previous_dilation = self.dilation if dilate: self.dilation *= stride stride = 1 if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( conv1x1(self.inplanes, planes * block.expansion, stride), norm_layer(planes * block.expansion), )
layers = [] layers.append(block(self.inplanes, planes, stride, downsample, self.groups, self.base_width, previous_dilation, norm_layer)) self.inplanes = planes * block.expansion
for _ in range(1, blocks): layers.append(block(self.inplanes, planes, groups=self.groups, base_width=self.base_width, dilation=self.dilation, norm_layer=norm_layer))
return nn.Sequential(*layers)
def forward(self, x): dict_out = {}
x = self.relu(self.bn1(self.conv1(x))) x = self.maxpool(x)
x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) dict_out['layer4'] = x
x = self.avgpool(x) x = torch.flatten(x, start_dim=1) x = self.fc(x)
return x, dict_out
def get_resnet(arch, block, layers, pretrained, progress, replace_stride_with_dilation): model = ResNet(block, layers, replace_stride_with_dilation) if pretrained: state_dict = load_state_dict_from_url(model_urls[arch], progress=progress) model.load_state_dict(state_dict) return model
def resnet50(pretrained=False, progress=True, replace_stride_with_dilation=None): return get_resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, replace_stride_with_dilation)
def resnet101(pretrained=False, progress=True, replace_stride_with_dilation=None): return get_resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress, replace_stride_with_dilation)
def resnet152(pretrained=False, progress=True, replace_stride_with_dilation=None): return get_resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress, replace_stride_with_dilation)
if __name__ == '__main__': net1 = resnet101(pretrained=True, replace_stride_with_dilation=[False, False, True]) net2 = resnet101(pretrained=True, replace_stride_with_dilation=[False, True, True])
x = torch.randn(8, 3, 224, 224) out1, dict_out1 = net1(x) out2, dict_out2 = net2(x) print(dict_out1['layer4'].shape) print(dict_out2['layer4'].shape)
|